Evolutionary study of HVR1 of E2 in chronic hepatitis C virus infection.

نویسندگان

  • Victoria Alfonso
  • Diego Martín Flichman
  • Silvia Sookoian
  • Viviana Andrea Mbayed
  • Rodolfo Héctor Campos
چکیده

Hypervariable region 1 (HVR1) of the hepatitis C virus (HCV) genome was directly sequenced from 12 chronically infected patients who had not responded to interferon (IFN) treatment. Due to the quasispecies nature of HCV circulating genomes, serum samples from four patients showing different evolutionary characteristics were further analysed. Serial samples from each patient were taken before, soon after and 14-23 months after a 6 month IFN treatment. HVR1 from each sample was amplified, cloned and the clones sequenced. For each patient, a phylogenetic analysis of the clones was performed and quasispecies complexity and genetic distances were calculated. The amino acid sequences and predicted antigenic profiles were analysed. The pre-treatment samples of the different patients presented dissimilar genetic quasispecies composition. For three of the patients, we showed that, regardless of the complexity or diversity of the viral populations before treatment, they evolved towards genetic diversification following selective pressure. Once the environment became stable, the entire population tended towards homogeneity. The fourth patient represented a case where different components of the quasispecies coexisted for long periods without replacement. We propose herein that the evolution of HVR1 of E2 is more likely to be directed by selection of clearly different subpopulations (modification of quasispecies equilibrium) than by a continuous mechanism related to the successive accumulation of point mutations. The prevalence of a quasispecies shift mechanism was revealed by the cloning analysis during the follow-up period of the evolutionary process.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sequence evolution of the hypervariable region in the putative envelope region E2/NS1 of hepatitis C virus is correlated with specific humoral immune responses.

Sequence evolution of the hypervariable region 1 (HVR1) in the N terminus of E2/NS1 of hepatitis C virus (HCV) was studied retrospectively in six chimpanzees inoculated with the same genotype 1b strain, containing a unique predominant HVR1 sequence. Immediately after inoculation, all animals contained the same HVR predominant sequence. Two animals developed an acute self-limiting infection. Ant...

متن کامل

Intra-host evolutionary dynamics of hepatitis C virus E2 in treated patients.

Hepatitis C virus (HCV) displays high genetic diversity. Inter-host sequence variability may mainly reflect a neutral drift evolution. In contrast, intra-host evolution may be driven by an adaptive selection to host responses to infection. Here, HCV E2 intra-host evolution in two patients during the course and follow-up of successive treatments with IFN-alpha and IFN-alpha/ribavirin was investi...

متن کامل

Antibody Response to Hypervariable Region 1 Interferes with Broadly Neutralizing Antibodies to Hepatitis C Virus.

UNLABELLED Hypervariable region 1 (HVR1) (amino acids [aa] 384 to 410) on the E2 glycoprotein of hepatitis C virus contributes to persistent infection by evolving escape mutations that attenuate binding of inhibitory antibodies and by blocking access of broadly neutralizing antibodies to their epitopes. A third proposed mechanism of immune antagonism is that poorly neutralizing antibodies bindi...

متن کامل

Conservation of the conformation and positive charges of hepatitis C virus E2 envelope glycoprotein hypervariable region 1 points to a role in cell attachment.

Chronic hepatitis C virus (HCV) infection is a major cause of liver disease. The HCV polyprotein contains a hypervariable region (HVR1) located at the N terminus of the second envelope glycoprotein E2. The strong variability of this 27-amino-acid region is due to its apparent tolerance of amino acid substitutions together with strong selection pressures exerted by anti-HCV immune responses. No ...

متن کامل

A Novel Multi-Epitope Vaccine For Cross Protection Against Hepatitis C Virus (HCV): An Immunoinformatics Approach

Background: Hepatitis C virus (HCV) causes acute and chronic human hepatitis infections. Due to the high genetic diversity and high rates of mutations in the genetic material so far there is no approved vaccine against HCV. Materials and Methods: The aim of this study was to determination B and T cell conserved epitopes of E1 and E2 proteins from HCV and construction of a chimeric pepti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of general virology

دوره 85 Pt 1  شماره 

صفحات  -

تاریخ انتشار 2004